Volume 7, Issue 23 (3-2017)                   مهندسی خوردگی 2017, 7(23): 47-60 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

The Effects of Pulse Waveforms and Additive on the Properties of NanoComposite PEO Coatings. مهندسی خوردگی 2017; 7 (23) :47-60
URL: http://journal.ica.ir/article-1-130-en.html
Abstract:   (227 Views)
Plasma electrolytic oxidation was employed for producing alumina, alumina/titania composite and alumina/ titania composite coatings containing sodium tungstate additive. These coatings were produced in a silicatebased electrolyte on 7075 aluminum alloy using unipolar and bipolar waveforms with anodic/cathodic duty aspect ratios of 1 and 0.5. The results showed that the morphology of the coatings surfaces depends on the used waveform. By increasing the cathodic duty cycle, pancake-like morphology was converted to crater-like one. The incorporation of TiO2 nano-particles into the coatings, led to the widening the micro-pores when unipolar waveforms were used. The results revealed that the incorporation of TiO2 nano-particles doesn’t depend on the used waveforms. Titania nano-particles were incorporated into the coatings via a physical entrapping mechanism, while the adsorption mechanism of tungstate ions was electrophoretic. The corrosion resistance of the coatings was increased by increasing the cathodic duty cycle. Furthermore, the use of titania nanoparticles led to a reduction of corrosion resistance and the use of tungstate additive in bipolar waveform compensated the reduced resistance. The corrosion currents recorded 3, 5 and 3 nano-amperes for simple, composite and additive contained composite coatings respectively.
Full-Text [PDF 1643 kb]   (160 Downloads)    
Type of Study: Research | Subject: General
Received: 2022/11/14 | Accepted: 2017/03/30 | Published: 2017/03/30

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Corrosion Sciences and Engineering

Designed & Developed by : Yektaweb