Volume 9, Issue 34 (2-2020)                   مهندسی خوردگی 2020, 9(34): 21-36 | Back to browse issues page

XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Evaluation of Schiff Base Containing Three C=N Groups as a Corrosion Inhibitor for 1018 Carbon Steel in 1.0 Molar Hydrochloric Acid Media. مهندسی خوردگی 2020; 9 (34) :21-36
URL: http://journal.ica.ir/article-1-52-en.html
Abstract:   (293 Views)
In this study, the inhibition effect of a Schiff base with three C=N groups and three aromatic rings on corrosion of 1018 carbon steel in 0.1 M hydrochloric acid is investigated by two electrochemical methods, impedance spectroscopy and polarization, at 25 °C. The inhibition efficiency increases by increasing the concentration of Schiff base from 100 to 500 ppm and the highest inhibition efficiency was about 96% at 25 °C for the concentration of 500 ppm of Schiff base. The results of the polarization method showed that the Schiff base in acidic solution acts as a mixed inhibitor. The charge transfer resistance (Rct) for 1.0 M HCl solution increases from 39.5 Ω.cm2 to 949.7 Ω.cm2 by adding 500 ppm of Schiff base. The effect of temperature on the inhibitor performance is investigated by electrochemical polarization method in the range of 25-65 °C and it shows decreasing of inhibition efficiency with increasing temperature. The adsorption of Schiff base molecules on the surface of 1018 carbon steel at all temperatures follows the Langmuir adsorption isotherm. The values of ΔGads obtain -32.122 kJ and -35.124 kJ mol-1 at 25 °C and 65 °C, respectively, which shows increment in its absolute value. These results show that the adsorption of Schiff base molecules on the surface of 1018 carbon steel is a physico-chemical adsorption.
Full-Text [PDF 1936 kb]   (180 Downloads)    
Type of Study: Research | Subject: General
Received: 2022/11/14 | Accepted: 2020/02/29 | Published: 2020/02/29

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Corrosion Sciences and Engineering

Designed & Developed by : Yektaweb